Vous êtes ici : UVSQ RechercheDoctoratSoutenances de thèse

Influence de la variabilité solaire sur le climat par Sébastien Bossay

Présentée par : Sébastien Bossay Discipline : météorologie, océanographie physique de l'environnement Laboratoire : LATMOS

Résumé :
Une grande partie de la variabilité naturelle de l’atmosphère et du climat est liée à la variabilité solaire. L’un des modes d’action du forçage solaire repose sur des perturbations de la moyenne atmosphère (stratosphère, mésosphère), notamment par l’intermédiaire de variations d’ozone (processus photochimiques) qui ensuite se propagent dans la troposphère jusqu’à la surface. La thèse se focalise sur la première étape de ce mode d’action, i.e. les perturbations de l’ozone associées à la variabilité solaire et plus particulièrement aux échelles de temps du cycle à 27 jours. Cette relation entre ozone et variabilité solaire est étudiée non seulement à partir de plusieurs séries temporelles de données satellitaires (MLS et GOMOS) mais également de résultats d’un modèle de chimie-climat (LMDz-Reprobus) sur des fenêtres d’analyse variant de 1 à 15 ans. La sensibilité moyenne d’ozone au cycle solaire à 27 jours (% de variation d’ozone pour 1% de variation du forçage solaire) se caractérise par des valeurs positives de 10 à 1 hPa avec un maximum de 0.4 vers 3 hPa. Cette sensibilité varie beaucoup selon la taille de la fenêtre d’analyse au point d’être masquée par la variabilité dynamique, même pendant les périodes de forte activité solaire. La dispersion des résultats apparaît aussi anti-corrélée à l’amplitude des fluctuations solaires rotationnelles qui est liée à la phase du cycle solaire à 11 ans. Dans la mésosphère, l’ozone est anti-corrélé à la variabilité solaire avec un maximum autour de 80 km. Il correspond exactement à l’altitude où la réponse de OH (le radical dominant dans la destruction de l’ozone mésosphérique) à la variabilité solaire est maximum.

Abstract :
A large part of the natural variability of the atmosphere and climate is related to solar variability. One of the forcing mechanisms of solar variability is based on perturbations of the middle atmosphere (stratosphere, mesosphere), particularly through ozone variations (photochemical processes), that then propagate through the troposphere to the surface. The thesis focuses on the first stage of this forcing mechanism, i.e. perturbations of ozone associated with solar variability and more specifically at the 27-day solar rotational time scales. The relationship between ozone and solar variability is studied not only using several time series of satellite data (MLS and GOMOS) but also results of a chemistry-climate model (LMDz-Reprobus) over analysis windows varying from 1 to 15 years. The mean ozone sensitivity to the 27-day solar cycle (% of ozone variation for 1% change in solar forcing) is characterized by positive values from 10 to 1 hPa with a maximum of 0.4 at 3 hPa. This sensitivity varies strongly depending on the size of the analysis window indicating that the solar signal can be masked by the dynamical variability, even during periods of strong solar activity. The dispersion of the results is found to be anti-correlated with the amplitude of the solar rotational fluctuations that are related to the phase of the 11-year solar cycle. In the mesosphere, ozone is found to be anti-correlated with solar variability with a maximum around 80 km. This corresponds exactly to the altitude of the maximum in the solar-induced enhancement of OH, the dominant radical in the destruction of mesospheric ozone.
Informations complémentaires
Daniel CARIOLLE, Directeur de Recherche, à Météo France/CERFACS - Toulouse - Rapporteur
Thierry DUDOK DE VIT, Professeur des Universités, à l’Université d’Orléans/Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E) - Orléans - Rapporteur
Slimane BEKKI, Directeur de Recherche, à l’Université Pierre et Marie Curie/Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) - Paris - Directeur de thèse
Marion MARCHAND, Chargée de Recherche, à l’Université Pierre et Marie Curie/Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) - Paris - Co-Directeur de thèse
David BOLSEE, Chercheur, à l’Institut d’Aéronomie Spatiale de Belgique (IASB) - Uccle (Belgique) - Examinateur
Valérie CIARLETTI, Professeur des Universités, à l’Université de Versailles Saint-Quentin-en-Yvelines/Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) - Guyancourt - Examinateur
Contact :
dredval service FED :