

université paris-saclay

UN NOUVEAU MATÉRIAU POUR PURIFIER LE GAZ NATUREL

Des chercheurs de l'université KAUST, de l'Institut Lavoisier Versailles et de l' Institut Charles Gerhardt Montpellier sont parvenus à concevoir un nouveau matériau extrêmement stable et facilement recyclable : KAUST-8. Ces travaux sont publiés dans la revue Science le 19 mai 2017.

Les domaines de la séparation et de la purification des gaz demandent des matériaux dont la porosité doit-être parfaitement contrôlée. Actuellement, les zéolites, composés inorganiques poreux, sont le plus souvent utilisés, mais réclament beaucoup d'énergie pour leur recyclage.

Des chercheurs de l'université saoudienne KAUST*, de l'Institut Lavoisier Versailles (CNRS/Université de Versailles Saint-Quentin-en-Yvelines) et de l'Institut Charles Gerhardt Montpellier (CNRS/Université de Montpellier/ENSCM) viennent de découvrir le KAUST-8, un metal organic framework (MOF) qui purifie le gaz naturel de son humidité et du dioxyde de carbone, tout en se recyclant facilement.

Le gaz naturel extrait du sol a besoin que l'on élimine l'eau et le CO2 qu'il contient, afin que seul le méthane reste présent. Cette séparation s'opère grâce à divers matériaux comme les zéolites, des cristaux d'aluminosilicates incroyablement poreux. Bien que très efficaces, ils demandent beaucoup d'énergie pour être régénérés entre chaque utilisation. Il appartient à la famille des metal organic frameworks (MOF), des matériaux

cristallins composés d'ions métalliques et de ligands organiques. Ce nouveau MOF est formé d'unités métalliques d'aluminium fluorés associés à des ligands pyrazine.

KAUST-8 se présente sous la forme d'un réseau tridimensionnel générant des tunnels si petits (0,36 nanomètre) qu'ils n'autorisent pas les molécules de méthane à pénétrer à l'intérieur. Les molécules d'eau et de dioxyde de carbone peuvent cependant y accéder et rester piégées par interactions avec des sites distincts : l'eau sur les sites métalliques d'aluminium et le dioxyde de carbone vers les atomes de fluor et la pyrazine, prédit par des simulations numériques. KAUST-8 est ainsi capable de purifier le gaz naturel avec des performances bien meilleures que celles des autres tamis moléculaires couramment employés. Ces travaux montrent également qu'il est possible de moduler les propriétés structurales et chimiques des MOF afin de les adapter à la séparation de molécules de taille plus grande, d'un intérêt majeur dans le domaine de l'énergie et de l'environnement.

Communiqué de presse - 339 Ko, PDF" class="lien_interne">> Communiqué de presse